F214

Module 4
Respiration

Answers
1. **S & C**

Mark the first answer. If the answer is correct and an additional answer is given that is incorrect or contradicts the correct answer then = 0 marks

CREDIT one statement and a suitable explanation related to that (first) given statement (e.g. S3 + E3 but not S4 + E1)

DO NOT AWARD 2 marks for 2 statements or 2 explanations

S1 glucose is not the only substrate / there are other substrates;
 ‘fats can (also) be respired’ = E1
 ‘fats can be respired as well as glucose’ = S1 + E1

E1 named alternative substrate;
 or

S2 ATP is produced / energy is released;
 DO NOT CREDIT energy produced / made / created

E2 (by) substrate level / oxidative, phosphorylation;
 or

S3 ATP / energy, required;

E3 (for) phosphorylation / glycolysis;
 or

S4 is not a single step reaction / other steps involved / other products / other intermediates;

E4 named stage(s) / named intermediate compound(s);
 Krebs cycle / ETC, happens = E4
 ‘other stages such as link reaction are involved’ = S4 + E4
 e.g. pyruvate / acetyl CoA / acetate
 IGNORE NAD(H) / FAD(H) / ATP
enzymes are involved;

or

or

coenzymes / NAD, involved;

DO NOT CREDIT NADP

D

E

E[NAD;]

ALLOW oxidised NAD

DO NOT CREDIT NADP / reduced NAD

F

pyruvate;

ACCEPT pyruvic acid

2.

(i) **Mark the first answer. If the answer is correct and an additional answer is given that is incorrect or contradicts the correct answer then = 0 marks**

glycolysis / glycolytic pathway;

CREDIT phonetic spelling but must have ‘glycol...’

(ii) **Mark the first answer. If the answer is correct and an additional answer is given that is incorrect or contradicts the correct answer then = 0 marks**

cytoplasm;

CREDIT cytosol

DO NOT CREDIT cytoplasm, in / of, mitochondrion

(iii) **Mark the first answer for each letter. If the answer is correct and an additional answer is given that is incorrect or contradicts the correct answer then = 0 mark**

D

E

ALLOW oxidised NAD

DO NOT CREDIT NADP / reduced NAD

F

pyruvate;

ACCEPT pyruvic acid
3. Award marks from labelled / annotated diagrams – but ensure that mp 2 only awarded if H clearly shown to be accepted by pyruvate

1 (pyruvate / F) converted to lactate;
 ACCEPT lactic acid
 DO NOT CREDIT if pyruvate → ethanol in the animal is indicated/implied
 DO NOT CREDIT wrong reaction type (e.g. oxidation)

2 F / pyruvate, accepts hydrogen (atoms);
 ACCEPT pyruvic acid
 DO NOT CREDIT hydrogen ions (unless also e) / molecule

3 hydrogen from, **reduced** NAD / **reduced E**;
 ACCEPT NADH / NADH₂ / NADH + H
 DO NOT CREDIT hydrogen ions (unless also e) / molecule

4 (catalysed by) lactate dehydrogenase;
 for pyruvate → lactate ACCEPT LDH

5 no, oxygen / O₂, to act as (final), hydrogen / electron, acceptor;

6 (so) link reaction / Krebs cycle / ETC, cannot take place;
 Needs a clear statement of not taking place
 CREDIT no, electron transport chain / electron carrier chain / chemiosmosis / oxidative phosphorylation

7 NAD / E, regenerated / recycled / able to be re-used;
 IGNORE reduced NAD, oxidised / reoxidised (as this does not give the idea of reusing it)

8 allows glycolysis to continue / pyruvate continues to be made;
 Needs a clear statement

9 limited / small amount of / some, ATP can be produced;
 CREDIT 1 ATP (per pyruvate) / 2 ATP (rather than 28-38 per glucose) / only substrate level phosphorylation
 IGNORE ‘enough ATP for ’

4. **physical (probably from diagrams)**

1 large nostrils (open) to take in air;
 ACCEPT oxygen

2 (when submerged) nostrils close / nose closes, to, keep air in / stop air from escaping;
 ACCEPT oxygen
 IGNORE ref to keeping water out

3 lungs / airways, have high (vital) capacity;
ACCEPT deep / barrel / large, chest **IGNORE** big lungs

CREDIT large lung **volume** /
- takes in large **volume** of oxygen /
- larger numbers of alveoli /
- larger (exchange) **surface area** /
- increased number of capillaries

links to respiration

4 **idea that** seal, has low(er) metabolic rate / has low(er) respiratory rate / has low(er) energy requirements / uses (relatively) little ATP;
- *e.g.*
 - (streamlined, less resistance so) uses less energy
 - (insulated so retain heat so) uses less energy
 - (buoyant so) less energy required
 - (small flippers so less surface area of extremity so loses less heat so) uses less energy

5 able to respire anaerobically for a long time / more glycolysis;
- ‘anaerobic’ needs time ref

6 large supplies of NAD (to accept H);

7 (this) prevents, build-up of lactate / lowering of pH;

ACCEPT lactic acid

8 **idea that** (seal) tolerates lactate / removes lactate quickly;

ACCEPT lactic acid

9 **idea that** (seal) tolerates high CO\(_2\) concentration;

10 **idea that** (seal) tolerates low pH / has **more** pH buffers;

synoptic / inference

11 **idea that** blood diverted from certain regions / certain regions have reduced metabolic activity;
- **DO NOT CREDIT** zero respiration rate

12 **idea that** has plenty of, haemoglobin / red blood cells / myoglobin (as oxygen source);

13 **idea that** haemoglobin has a higher affinity for oxygen / dissociates less readily / dissociation curve shifted to **left**;
5. no photophosphorylation;
 no ATP produced;
 no reduced NADP produced;
 no Calvin cycle / no light-independent stage;
 no GP to TP / no TP to RuBP;
 no fixation of carbon dioxide;
 AVP; e.g. no production of, organic molecules / named molecules
 \textbf{A} autotrophic nutrition stops
 \textbf{R} food
 ref to no respiratory substrate max 3

6. (i) A glycolysis;
 B fermentation / anaerobic respiration / reduction of pyruvate;
 C aerobic respiration / Krebs cycle \textbf{and} oxidative phosphorylation / ETC / electron transport chain; 3

 (ii) C;*allow ecf from (i)* 1

 (iii) A;*allow ecf from (i)* 1

 [5]

7. (i) (when cyanide absent) complete homogenate can fully respire the
 glucose/pyruvate to produce carbon dioxide;
 (when cyanide is present), pyruvate does not enter the mitochondria;
 some carbon dioxide produced when pyruvate is converted to ethanal;
 breakdown of the glucose / pyruvate is incomplete;
 ref. to anaerobic respiration; max 3

 (ii) pyruvate is end product of glycolysis;
 pyruvate can enter mitochondria;
 carbon dioxide produced in the Krebs cycle and link reaction;
 by, decarboxylation / decarboxylase(s);
 glucose cannot enter the mitochondria;
 AVP; further detail e.g. no carriers for glucose in mitochondrial
 membranes
 glycolytic enzymes not found in mitochondria
 portion (of homogenate)
 glycolytic enzymes found in, cytoplasm / cytosol max 3
(iii) pyruvate is converted to ethanol in cytoplasm; ethanol is converted to ethanol; does not involve, cytochromes / ETC / oxidative phosphorylation; enzymes in cytoplasm not inhibited by cyanide; max 3

8. (i) a biological molecule that can be broken down in respiration to release energy; 1
(ii) award both marks for correct answer 55/77; 0.7 / 0.71; 2
(iii) 1.0; 1

9. ref. to potassium hydroxide / soda lime; ref. to equilibration / use syringe to set manometer fluid (level); leave for suitable length of time (minimum 20 minutes) and measure distance moved by fluid; repeats and calculate mean; calculate volume of oxygen taken up per minute; AVP; e.g. ref to set-up of control tube (e.g. same mass of beads as of fungus) or (same volume of inert substance as substance A) detail of how to calculate volume of oxygen (by multiplying distance moved by fluid in capillary by 2πr) max 4

10. (a) (i) removal of, carbon dioxide/carboxyl group; removal of hydrogen; R \(\text{H}_2 \)/hydrogen molecules/hydrogen ions A \(\text{H}/2\text{H} \) 2
(ii) P and Q; 1

(b) 1; 1

(c) (i) 3; 1
(ii) 2
(ii) 1. inner mitochondrial membrane/cristae;
2. ref to (NADH) dehydrogenase;
3. hydrogen split into protons and electrons;
4. ref to, electron carriers/ETC/cytochromes;
5. energy released from electrons;
6. ref to protons pumped across membrane;
7. protons accumulate in intermembranal space;
8. proton gradient/pH gradient/H⁺ gradient;
9. protons pass through ATPase; A ATP synthase/ATP synthetase/stalked particle
10. ref. to oxygen (final) hydrogen/electron acceptor;
11. formation of water;

(d) fats/fatty acids, not respired;
ref to (β-)oxidation (of fatty acids) requires NAD;
NAD used in breakdown of alcohol;
NAD is, limiting/in short supply/AW;
fats formed from fatty acids plus glycerol;
AVP; e.g. further detail of alcohol/fat metabolism max 3

11. (i) releases/source of/provides/to give, energy;
for germination;
for growth/protein synthesis/spindle formation/organelle replication/
DNA replication/active transport/cell division/other named function; 2 max

(ii) higher energy density/release twice as much energy per, g/unit mass;
compared to, glucose/protein;
39 kJ g⁻¹;
higher proportion of, hydrogen atoms/carbon-hydrogen bonds;
advantage for dispersal/named advantage;
AVP; e.g. ref to coenzyme A formation 2 max
12. **heat loss**
1. body/blood, temperature rises;
2. may affect/denature, enzymes/proteins;
3. panting cools body;
4. ref. evaporative cooling;

fate of lactate
5. (high) lactate concentration needs to be reduced;
6. due to anaerobic respiration;
7. panting provides extra oxygen/ref. oxygen debt;
8. lactate oxidized to pyruvate;

respiratory gases
9. myoglobin would be reoxygenated;
10. haemoglobin would be reoxygenated;
11. ATP/CP, resynthesised in muscle tissue;
12. removal of extra carbon dioxide; 4 max

13. (a) for, flying/hovering/beating wings;
 muscle activity/AW;
 ref. ATP/respiration;
 AVP; e.g. explanation of energy demand of flight
 small size qualified; e.g. increases heat loss/
 ref. large surface area to volume ratio
 homeothermic qualified;
 migration qualified;
 feather growth qualified; e.g. ref. mitosis/protein synthesis max 4

(b) **description**
 D1 high(est) incidence of torpor/AW;
 D2 low(est) oxygen consumption/AW;
 D3 high(est) body mass/AW;
 D4 data quote; 3 max

 explanation
 E1 less food used;
 E2 (for) less respiration/lower BMR/lower body temperature;
 E3 more food stored;
 E4 as fat;
 E5 (food store/fat) for, migration/flight; max 4

(c) flying, easier/uses less energy (with incomplete feathers if mass low);
 can, escape predators/find food, (by flying);
 food used for feather growth;
 therefore, fat stores used/less food stored;
 incomplete/missing feathers may reduce body mass; max 2
(d) yes
(autumn) high(est) mass birds have low(est) oxygen consumption;
(spring) low(est) mass birds have high(est) oxygen consumption;
data quote mass plus O₂ consumption;
only generate heat in proportion to (small) mass;
but lose it in proportion to (large) surface area;
homeothermic/small birds find it hard to keep warm; max 3

14. (a) cut/damage, breaks tonoplast/opens vacuole/mixes enzyme and precursor/
AW;
enzyme-substrate collisions/AW;
(enzyme-substrate complex) releases, smell/volatile chemicals; 3

(b) less precursor chemical;
due to, herbivore/fungal/bacterial damage;
due to sulphur recycling;
due to onion being older;
used pyruvate for, link reaction/Krebs cycle/respiration;
AVP; max 2

(c) (i) identify mildest/AW;
and breed together;
detail cross-pollination;
idea, repeat/many generations AW;
directional selection;
AVP; e.g. reference to frequency of alleles max 3
(ii) grow in low level of, sulphur/sulphate; 1

(d) method of quantifying onion strength/producing extracts of different concentration;
method of measuring, rotting/antibiotic effect of onion extract;
replicates/mean;
ref. control variable or example;
ref. fungi/bacteria;
AVP; e.g. reference to timescale
AVP; e.g. second controlled variable max 3
15. accept labelled sketch diagram for marking points below

- nitrogenous base / purine;
- adenine;
- pentose / 5 carbon, sugar;
- ribose;
- three, phosphate groups / Pi; R phosphate molecule phosphorylated nucleotide;

A adenosine as an alternative to adenine plus ribose 4 max

16. 1 NAD / FAD, involved in respiration;
2 associated with, dehydrogenase enzymes / dehydrogenation;
3 2 molecules of NAD (reduced) in glycolysis;
4 link reaction producing 1 molecule of NAD (reduced);
5 Krebs cycle produces 3 NAD (reduced) (per turn of cycle);
6 detail of any one step in respiration where NAD (reduced) is produced;
7 Krebs cycle produces 1 FAD (reduced) (per turn of cycle);
8 carriers / transfers, hydrogen to, inner mitochondrial membrane / cristae / cytochromes / ETC;
9 mitochondrial shuttle (bringing NAD reduced from glycolysis into matrix);
10 NADP involved in photosynthesis;
11 produced in non-cyclic (photo)phosphorylation;
12 hydrogen comes from, water / photolysis;
13 (used in) Calvin cycle / light independent stage;
14 GP to TP step;
15 AVP; e.g. NADP involved in transporting hydrogen from grana to stroma
16 AVP; e.g. hydrogen split into electrons and protons at ETC

credit annotated diagrams 7 max

QWC – clear, well organised using specialist terms; award QWC mark if three of the following are used

- photophosphorylation
- cristae
- glycolysis
- photolysis
- Calvin cycle
- link reaction
- Krebs cycle
- dehydrogenase / dehydrogenation 1
17. light absorbed by, pigment / bacteriorhodopsin / protein ;
ref to electron carriers / change in shape of bacteriorhodopsin ;
energy released from electrons ; R produced / created / made
protons into cell wall ;
create, proton gradient / electrochemical gradient / pH gradient / proton motive force ;
protons diffuse / move down gradient ;
through, ATP synth(ase) complex / stalked particles ; A ATPase
(ATP formed from) ADP + P(i) ;
AVP ; e.g. ref to chemiosmosis, ref to energy transducing membrane, ref to redox reactions.

18. A ;
C ;
C ;
B ;

19. ref to oxidative phosphorylation and ATP production ;
needs supply of hydrogen ;
to form reduced, NAD / FAD ;
lipids have more, hydrogen / hydrogen – carbon bonds ;
more acetyl coenzyme A generated / more ‘turns’ of Krebs cycle ;

20. dinitrophenol in body ;
ETC still functioning ;
less ATP formed in respiration ;
food not enough to meet metabolic demands of body / AW ;
had to respire, body tissues / food stores ;
AVP ; e.g. heat production increasing metabolic rate

21. (a) avoid attracting a mate of a different species ; ora
ensure reproductive isolation ;

(b) (i) diffusion ;
(ii) so that they do not receive oxygen constantly ;
there are mitochondria between them and the cell surface ;

(c) mitochondria / aerobic respiration / oxidative phosphorylation, inhibited
only briefly;
ioxygen concentration decreases again;
preventing, action of luciferase / production of light;
each flash short; *ora* e.g. so not continuously lit
AVP;

(d) active transport; *A* e.g. Na\(^+\)/K\(^+\) pump
protein synthesis;
synthesis of named substance;
movement of organelles;
phosphorylation of glucose;
AVP; ; ; e.g. transcription, translation, anabolic reaction
R respiration, DNA replication, chromosome movement, mitosis

(e) cells / membranes, damaged / disrupted;
nitrous oxide released;
mitochondria stop using oxygen;
oxygen, allows light production / reaches light-producing organelles;
in unlimited quantities / continuously, so light is brighter;
respiration / oxidative phosphorylation, ceases;
no more, ATP / NADH\(^2\);
luciferin, synthesis / regeneration, stops;
AVP;

(f) live bacteria, respire / produce ATP; *ora*

(g) **mRNA** (coding for luciferase); *A* DNA

[13]
22. (i) palisade (mesophyll) ;
spongy (mesophyll) ;
mesophyll / chlorenchyma – 1 mark 2
(ii) 1.7, 3.1, 4.0, 4.7, 4.9, 5.0 ; 1
(iii) selection of two temperatures 10 °C apart ;
respiration
ref to release of carbon dioxide (in dark is measure of respiration) ;
state two figures very close to value of 2, therefore supports ;
(all steps in) respiration enzyme catalysed ;
photosynthesis
data quotes must be from true rate of photosynthesis
only value between 5 °C and 15 °C is close ;
photosynthesis does not support as (other) values not near 2 ;
A data quote to illustrate this / ecf
not just enzyme-controlled process / AW ; 4 max
(iv) light intensity limiting factor ;
low rate photosynthesis ;
rates respiration increases at higher temperatures ;
rates respiration, close to / exceeds, rate of photosynthesis ; A ora
net primary productivity is lower / sugars broken down more quickly
than formed ; 3 max

23. 1 decomposition / decay / rotting (of grass) ;
2 (microbial) respiration ;
3 (releases) heat ;
4 temperature figures ;
5 uses up oxygen / aerobic ;
6 oxygen figures ;
7 produces carbon dioxide ;
8 carbon dioxide figures ;
9 grass cuttings provide insulation ;
10 AVP ; 5 max
24. (a) 1 rate of respiration can equal rate of photosynthesis / CO_2 used = CO_2 produced / O_2 used = O_2 produced;
2 ref to compensation point;
3 mitochondria use oxygen;
4 chloroplasts produce oxygen;
5 mitochondria are always active / respiration continues independently of light;
6 chloroplasts are inactive in dark / photosynthesis does not take place without light;
7 oxygen released by, chloroplasts / photosynthesis, can be utilised by mitochondria / respiration;
8 at high light intensities, chloroplasts produce more oxygen than the mitochondria consume;
9 AVP; e.g. valid refs to CO_2 exchange max 4

(b) phosphate ions are used to produce ATP;
in oxidative phosphorylation / Krebs cycle / chemiosmosis / electron transport / ATP synth(et)ase;
ATP leaves mitochondria; max 2

c) carrier protein / transport protein / transmembrane protein involved;
A ref to a specific channel concentration of triose phosphate is higher in the chloroplast (than in the cytoplasm);
because it is a product of, photosynthesis / light independent reaction / Calvin cycle;
triose phosphate moves, down concentration gradient / from high to low concentration;
ATP not involved / no energy used; max 2

d) ignore references to chloroplasts or mitochondria being cells, having cytoplasm and reference to free ribosomes free / naked, DNA; A DNA not surrounded by, membrane / envelope have an inner folded membrane / AW;
ribosomes, smaller than those in cytosol / similar in size to prokaryotic ribosomes; A ref to 70S and 80S circular DNA; A loop AVP; e.g. absence of introns
R absence of a nucleus from the chloroplast or mitochondrion
R ref to membranous organelles as chloroplasts and mitochondria are these organelles max 2
25. S; R; S; A – correct names instead of letters

[3]

26. FAD / NAD; A reduced FAD / reduced NAD / AW

[1]